domingo, 22 de noviembre de 2009

Variables que afectan al proceso de producción de biodiésel

Debido a que la obtención del biodiésel se basa en la reacción química de la transesterificación, se debe resaltar que hay variables como la acidez y la humedad, el tipo de catalizador y concentración, la relación molar de alcohol/aceite y tipo de alcohol, el efecto del tiempo de reacción y la temperatura, entre otras que afectan significativamente el proceso, las cuales se describen a continuación:

- Acidez y humedad

Los contenidos de ácidos grasos y de humedad son los parámetros determinantes de la viabilidad del proceso de transesterificación del aceite vegetal. Para que se realice la reacción completa se necesita un valor de ácidos grasos libres, menor al 3%. Cuanto más alta es la acidez del aceite, menor es la conversión. Además, tanto el exceso como la deficiencia de catalizador pueden producir la formación de jabón. Como se ha comentado, la presencia de humedad disminuye el rendimiento de la reacción, pues el agua reacciona con los catalizadores formando jabones.

Igualmente, el proceso de catálisis ácida también se puede usar para la esterificación de estos ácidos grasos. Las materias primas usadas como base para el proceso de alcoholisis deben cumplir ciertas especificaciones. Los triglicéridos deben tener un valor ácido bajo y los materiales deben contener baja humedad. La adición de catalizadores de hidróxido de sodio compensa la alta acidez, pero el jabón resultante provoca un aumento de viscosidad o de formación de geles que interfieren en la reacción y en la separación del glicerol. Cuando no se dan estas condiciones los rendimientos de la reacción se reducen sustancialmente.

Actualmente, la mayor parte del biodiésel producido, procede de aceites vegetales al que se le añade metanol y un catalizador alcalino. Sin embargo hay muchos aceites de bajo costo y grasas animales que pueden ser utilizados. Su problema radica en que suelen contener gran cantidad de ácidos grasos que no se pueden convertir en biodiésel usando catalizadores alcalinos. En estos casos es necesario hacer la esterificación en dos etapas: inicialmente debe realizarse un pretratamiento para convertir los ácidos grasos libres en ésteres metílicos con un catalizador ácido, y en un segundo paso se realiza la transesterificación con un catalizador alcalino, para completar la reacción.



- Tipo de catalizador y concentración

Los catalizadores empleados para la transterificación de los triglicéridos se pueden clasificar en alcalinos, ácidos, enzimáticos o catalizadores heterogéneos, siendo los básicos y en particular los hidróxidos los más utilizados. Si el aceite usado tiene un alto grado de ácidos grasos y elevada humedad los catalizadores ácidos son los más adecuados. Estos ácidos pueden ser sulfúrico, fosfórico o ácido sulfónico orgánico. La metanólisis del sebo de animal se ha estudiado con NaOH y NaOMe. Comparando los dos catalizadores, el NaOH ha producido mejores resultados que el NaOMe. El metóxido de sodio provoca la formación de muchos subproductos, principalmente sales de sodio, que deben eliminarse posteriormente.

En los procesos de metanólisis alcalina los principales catalizadores usados han sido el hidróxido potásico y el hidróxido sódico, ambos en concentraciones de 0.4 a 2% v/v de aceite. Aceites, tanto refinados como crudos, con un 1% de catalizador (tanto hidróxido sódico o potásico) han tenido muy buenos resultados. La metanólisis del aceite de soja ha producido sus mejores resultados de rendimiento y viscosidad con una concentración de 1% de hidróxido potásico.

La actividad catalítica ácida se ha estudiado también con aceites vegetales reutilizados. Se han utilizado cuatro concentraciones 0,5, 1, 1,5 y 2,25 M de HCl y los resultados se han comparado con una concentración de 2,25 M H2SO4, obteniendo una mejor actividad catalítica con el ácido sulfúrico en un rango de 1,5-2,25 M de concentración. Aunque el proceso de transesterificación, con catalizadores alcalinos, para transformar los triglicéridos en sus correspondientes ésteres metílicos tiene una conversión muy alta en un periodo más corto de tiempo, tiene algunos inconvenientes: el catalizador debe ser separado del producto final, la recuperación del glicerol puede resultar difícil, el agua alcalina resultante del proceso debe ser tratada y los ácidos grasos y el agua afectan a la reacción.

Los catalizadores enzimáticos pueden obtener resultados relevantes en sistemas tanto acuosos como no acuosos, lo que resuelve alguno de los problemas anteriores. En particular el glicerol se puede separar fácilmente y, también, los ácidos grasos contenidos en el aceite reutilizado se pueden convertir completamente en esteres alquílicos. En cambio el uso de estos catalizadores enzimáticos tiene un coste superior que el de los alcalinos.



- Relación molar de alcohol / aceite y tipo de alcohol

Una de las variables más importantes que afectan al rendimiento del proceso es la relación molar del alcohol y los triglicéridos. La relación estequiométrica requiere tres moles de alcohol y un mol de triglicérido para producir tres moles de ésteres y un mol de glicerol. La transesterificación es una reacción de equilibrio que necesita un exceso de alcohol para conducir la reacción al lado derecho (producción ésteres). Para una conversión máxima se debe utilizar una relación molar de 6:1. En cambio un valor alto de relación molar de alcohol afecta a la separación de glicerina debido al incremento de solubilidad. Cuando la glicerina se mantiene en la solución hace que la reacción revierta hacia la izquierda (reacción reversible), disminuyendo el rendimiento de los ésteres.

La formación de éster etílico comparativamente es más difícil que la de éster metílico, especialmente la formación de una emulsión estable durante la etanólosis es un problema. El etanol y el metanol no se disuelven con los triglicéridos a temperatura ambiente y la mezcla debe ser agitada mecánicamente para que haya transferencia de masa. Durante la reacción generalmente se forma una emulsión, en la metanólosis esta emulsión desciende rápidamente formándose una capa rica en glicerol quedándose en la parte superior otra zona rica en éster metílico (biodiésel). En cambio en la etanólisis esta emulsión no es estable y complica mucho la separación y purificación de los ésteres etílicos. La emulsión está causada en parte por la formación de monoglicéricos y diglicéricos intermedios, que contienen tanto grupos hidróxidos polares como cadenas de hidrocarburos no polares.



- Efecto del tiempo de reacción y temperatura

La conversión aumenta con el tiempo de reacción. Así, Feedman y otros investigadores realizaron la transesterificación del aceite de cacahuete, semilla de algodón, girasol y soja con una relación molar de 6:1 de metanol, con un catalizador de metóxido sódico al 0.5% a 60ºC según el autor. Después de 1 minuto se observó un rendimiento de aproximadamente el 80% para la soja y el girasol, después de una hora la conversión era la misma para los cuatro, con un valor aproximado del 93%.

La transesterificación se puede producir a diferentes temperaturas, dependiendo del tipo de aceite. En el caso de aceite refinado con metanol (6:1) al 1% NaOH, la reacción se estudió a tres temperaturas diferentes. Después de 6 minutos los rendimientos fueron 94%, 87% y 64% para temperaturas de 60, 45 y 32ºC, respectivamente. Después de una hora la formación del éster era idéntica para 60 y 45ºC y ligeramente menor para 32ºC.

No hay comentarios:

Publicar un comentario